
 MODEL 7956 USERS MANUAL

 Document number 7956V230.MAN

 COPYRIGHT 1984, 1986- GTEK, INC.

 DATE- MAY 1, 1986

 * * * ** READ THIS IF NOTHING ELSE *****

THE END OF THE PROGRAMMING SOCKET MARKED BOT TOM IS
WHERE GROUND IS. THIS MEANS THAT PIN 12 ON A 24 PIN PART
GOES AT THE BOTTOM. SO DOES PIN 14 ON A 28 PIN PART.

APPLY AC POWER BEFORE PUTTING DEVICES INTO THE
PROGRAMMER.

DO NOT ATTEMPT TO READ A MASKED ROM WITHOUT CHECKING
TO SEE IF VPP IS APPLIED DURING READS FOR THAT PART TYPE
NUMBER.

SEE INFORMATION ABOUT BAUD RATES AND CABLES IF
PROGRAMMER FAILS TO COMMUNICATE.

THIS DOCUMENT CONTAINS USER INFORMATION ON THE GTEK
MODEL 7956 EPROM PROGRAMMER. ITS CONTENTS ARE
PROPRIETARY AND MAY NOT BE REPRODUCED IN WHOLE OR IN
PART, WITHOUT THE EXPRESS WRITTEN CONSENT OF GTEK, INC.
THE INFORMATION IN THIS MANUAL IS PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED. GTEK, INC. DOES NOT ASSUME ANY LIABILITY FOR
DAMAGES. TECHNICAL INFORMATION AND SPECIFICATIONS IN-
CLUDED IN THIS DOCUMENT ARE SUBJECT TO CHANGE WITHOUT
NOTICE.

I

INTRODUCTION

Congratulations. You now have, what we believe to be, the most
cost effective gang eprom programmer on the market today. The

design philosophy used on the 7956 allows for simple future expan-
sion of capabilities. It may be used as a stand alone production
programmer, or via its RS-232 interface from a host computer or
terminal. All serial communications with the 7956 is in printable ASCII
characters and it supports Intel and Motorola hex formats as well as
simple block formats. Additionally, the 7956 supports the MCS-86
extended hex format, and Motorola’s S record format with features
for automatically split programming two eproms for use in a true 16
bit data path. Resident features include facilities for making
source to eprom content comparisons, erasure checks, formatted
device listings, menu driven device selection, and more.

The 7956’s interrupt driven type ahead buffer allows it to program and
verify in real time, while data is being sent (transparent to the user,
whose sole responsibility is to send and receive data). Two user
selectable algorithms are available, a standard 50ms program cycle
with post verification and adaptive algorithms.

The user may elect to use the adaptive (intelligent) algorithm on 27128,
2764, 2732, 2732A device types. Adaptive algorithms are required
and automatically used on the 2764A, 27128A, 27256, F27256, and
27512. MCM68764’s and MCM68766’s also use an adaptive algo-
rithm. Adaptive algorithms typically offer a six fold improvement in
programming time over the standard algorithm. Extended diagnos-
tics pinpoint the cause of errors.

The 7956 is capable of programming and reading the following devices
(at the time of this printing).

 NMOS EPROMS:

2508, 2516, 2532, 2564, 2758A, 2758B, 2716, 2732, 2732A, 2764, 2764A,
27128, 27128A, i27256, F27256, 27512, 5133, 5143, MCM68766,
MCM68764

 CMOS EPROMS:

27C16, NMC6716, 27C32, F27C64, i27C64, 87C64, 87C256, i27C256,
F27C256, i27C512, F27C512

 MPU’S:

8741, 8742, 8748, 8748H, 8749, 8751, 8755

 (482, 484, 512, 513, 756 ADAPTER)

 EEPROM’s:

Seeq 5213, Xicor X2816A, X2864A, Intel i2816A, i2817A

II

COMMANDS

Comments:

All voltages and pin configurations are set up by the onboard
microprocessor and no personality modules are required. Don’t try to
read ROM equivalents until you have checked to see if you might
damage the ROM.

Remember that the Master Socket may have programming voltage
applied to pin 1. No other pin of the Master Socket gets programming
voltage. This means that you may NOT copy from a 2764A to a 2764,
unless you have taken action to prevent programming voltage from
being applied to pin 1 of the 2764A. You can also get around the
problem by copying the 2764A to a file and then making a 2764 master
chip.

INITIALIZATION:

1) Remove all devices from the master and slave sockets of the
programmer and apply AC power. If the dip switches are selecting
anything from 02-99, the programmer will initialize to the selected
device and is then ready to program. If a 00 is selected, the Leds will
begin to Rotate in a binary sequence until you press either the Copy
or Verify button. The part selected in this manner is then displayed
on the Leds and sent via RS-232 as the prompter. A 01 will cause the
Leds to Rotate also, and pressing Verify or Copy will stop them, but
you must then use the Copy and Verify button to select the part you
desire by the binary setting of the Leds, or use the dips to select the
desired part, or communicate with the Menu command and the dip
selection in position 00.

2) If the rotary dip switch is left in position 00, you can select a device
by using the menu command via RS-232. This is similar to the method
used in the 7128 and the 7228. See the Menu command section to do
this. PGX and PGMX software is compatible with this unit.

3) When you have made your setting with the dip in the first position,
move the selector back to zero to use the selection. You may now
stand alone or communicate with the programmer with the eprom
type you have selected.

STAND ALONE COMMANDS:

1) VERIFY SLAVES FOR ERASURE - Pressing the Verify button
causes the programmer to check the slave sockets for erasure. An
illuminated error light indicates a non erased device.

2) COMPARE SLAVES AGAINST MASTER - Depressing both the verify
and copy buttons simultaneously causes the programmer to compare
the contents of the slave sockets against that of the master
socket. An illuminated error light indicates a slave which does NOT
compare. Note: When executing this command, both the ready and
busy lights will be illuminated.

3) COPYING FROM MASTER TO SLAVES - Depressing the copy
button causes all data from the master socket to be programmed
into the slave devices. An illuminated error light indicates the slave
did not program properly.

Note that the previous commands may be aborted by depressing
either the verify or copy button while the command is in progress. A
short beep is issued each time an error occurs. A longer beep is issued
upon completion of the command.

RS-232 SOFTWARE COMMANDS:

The following commands which program affect all slaves. Commands
which upload data to the host via RS-232 get their data from slave
socket 7, the one just to the right of the master socket.

P PROGRAM COMMAND.

Sending a “P”, followed optionally by an ASCII-HEX address, and a
valid delimiter puts the 7956 into the program mode. Once in the
program mode, ASCII-HEX data to be programmed is sent. The data
may be a continuous stream or the bytes (groups of two hex charac-
ters) may be separated by valid delimiters. The program mode

is terminated upon the receipt of an ASCII dollar sign, “$” or if an error
occurs.

Thus, the program command may be used to program one byte or a
block of bytes at any given location. Valid delimiters are spaces,
commas, carriage returns, line feeds, or dashes. It may be useful to
note that the 7956 totally ignores null characters. All characters sent
are echoed as they are removed from the input FIFO (type ahead
buffer). NULL, XON, and XOFF characters are never put into the FIFO.

The 7956 tries to program all 8 sockets. A *WP error will be issued only
if all eight slave sockets fail. YOU must clear the error lights with the
“X” command before programming if you want to know if any errors
occurred on a particular socket. A short beep will sound when an error
occurs. Other errors are handled as they occur with messages. The
following example illustrates how 33h and 23h are programmed to
locations 444h and 445h in a 2716.

Example: 2716P444-33 23$

2716

[ready for next command]

: INTEL HEX PROGRAM COMMAND.

When in the command state, receipt of a colon is interpreted as the
lead character in an Intel hex record. The 7956 automatically enters the
program mode and programs the data contained in the hex at the
address specified in the header of the hex record. The check sum is
verified at the end of the hex record and the programmer then returns
to the command state but does not reissue the command prompter
unless the record happened to be the END record. This is done in
anticipation of another hex record, i.e., all characters from the hex file,
sent to the Model 7956 will be echoed back to the user with no additions
or deletions.

The error light above any socket which fails to program properly will
light. Remember to clear the error lights before sending your file with
the “X” command. A short beep will be issued each time an error
occurs, except when using adaptive algorithms. If a data error,

checksum error, or syntax error occurs during the file transfer, the
programmer will issue the appropriate error message and abort back
to the command state. A *WP error will be issued only if all eight slaves
fail.

 See the section on toggles and hex formats for clarification on how
to program two devices for device use on a true 16 bit data bus. The
segment base address register, maintained by the 7956, is
automatically cleared when the end record is detected, or if any
other command is executed other than the Intel Hex command.

S MOTOROLA HEX PROGRAM COMMAND.

 This command functions precisely the same way that the Intel hex
program command does, except the format is the Motorola S record
format. Records may be of type S0, S1, S2, S3 OR S9.

/ TEKTRONIX HEXADECIMAL PROGRAM COMMAND.

 When in the command state, receipt of a slash is interpreted as the
lead character in a Tektronix hex block. The 7956 automatically
enters the program mode and programs the data contained in the hex
block at the address specified in the header of the hex block. The
checksums are verified at the end of the hex block and the
programmer then returns to the command state but does not re-issue
the command prompter unless the block happened to be the
termination block. This is done in anticipation of another hex block,
i.e., all characters from the hex file, sent to the Model 7956 will be
echoed back to the user with no additions or deletions.

R BLOCK READ COMMAND (FROM SOCKET E7 ONLY)

 The R command, followed optionally by beginning and ending
addresses, causes the Model 7956 to output a continuous string of
ASCII-HEX characters between the specified addresses. If no
addresses are specified, the 7956 will output the entire contents of
the selected device. The R command may be aborted at any time by
sending a dollar sign, “$”, to the programmer. The following example
uses the eprom programmed in the example of the P command.

 Example: 2716R444,445

 3323

 2716

 Note: The R command is primarily for automated reading of eproms.
If you execute the command line as shown in the above example, you
will find that the data output overwrites the command line unless your
terminal is in an auto line feed mode. (Eg. 3323_R444,445)

OI INTEL HEX FILE OUTPUT COMMAND. (FROM E7)

 The OI command has the same command syntax as the R com-
mand. It differs in that the 7956 will output the device contents as
an Intel hex file, including the end record, between the specified
addresses or if no addresses are specified, the entire device. Again,
the command may be aborted if desired with a dollar sign, “$”.

OM MOTOROLA HEX FILE OUTPUT COMMAND.

 The OM command functions precisely the same way the OI com-
mand does, except that the file output is in the Motorola S record
format.

OT TEKTRONIX HEX FILE OUTPUT COMMAND.

 The OT command works the same way as the OM and OI command
does, except that the output is Tektronix Hexadecimal Format.

L LIST FORMATTED COMMAND.

 The L command outputs the data, between optionally specified
addresses, in a formatted fashion similar to many dump utilities. If no
addresses are specified, the entire contents will be listed and the
command may be aborted with the dollar sign, “$”. Each line of the
listing includes the beginning address in ASCII- HEX, sixteen data
bytes in ASCII-HEX and the ASCII REPRESENTATION of the data.

Non printable bytes are replaced with periods in the ASCII
representation field.

 Example:

 2716L90,AF

 0090 4845 4C4C 4FFF//99FF HELLO.//..

 00A0 FFFF FFFF FFFF//FFFF//..

 2716_ [prompter indicates end of command]

 Note: Unlike the R, OI, OT and OM commands, the L command
will output a carriage return and line feed at the beginning of the
listing. This is because the L command is primarily used when the
host is functioning as a terminal and it would be irritating to have the
first line of the listing overwrite the command line.

V VERIFY ERASURE COMMAND.

 The V command checks the cells between the optionally specified
addresses for erasure, FF’s or 00’s as the device type dictates. If no
addresses are specified, the entire device is checked. If a non erased
cell is encountered, the led above that particular socket will light and
a short beep will be sounded. Remember to reset the leds before
issuing the “V” command (with an “X” command). Any messages
refer to the Slave socket next to the Master socket. The process
continues until the end address is reached or the command is aborted
with a dollar sign, “$”. The programmer is left in the “compare”
mode. The following example uses the same eprom used in the P and
R command examples.

 Example: 2716V

 2716

M MENU SELECTION. (DIP POSITION 00)

You may select the device you will be working with in 2 ways. The
current device type always becomes part of the command prompter.
Selecting a device establishes the programming algorithm to be used,
as well as the device pinout, proper programming voltage and
prompter.

See note about programming voltages and 28 pin parts under com-
ments at the beginning of the command section.

.pa

 Instructions:

 A) Direct Selection Method (types 02-99):

 1) Move selector switch to position desired from the decimal
column in the table on the following page. See Appendix D for single
dip select.

 B) Software Selection Method:

 1) Move selector to position 00 and leave it there.

 2) Press “M” on keyboard.

 3) Then press the code letter for the device you want or
 to get a displayed menu.

.PA

 Dip Switch Menu Selection Table:

 (I) = intelligent mode selected by “TI”.

 i = always intelligent

METHOD A

NMOS PN: DIP NMOS PN: DIP

2516 ——- 22 i2764A ——- 27

2532 ——- 08 5133 ——- 15

2564 ——- 14 5143 ——- 18

2758A ——- 19 27128 ——- 18

2758B ——- 20 27128 -(I)- 06

2716 ——- 02 i27128A ——- 28

2732 ——- 03 i27256 ——- 07

2732 -(I)- 16 iF27256 —*— 21

2732A ——- 04 i27512 ——- 33

2732A -(I)- 17 i68764 ——- 09

2764 ——- 15 i68766 ——- 09

2764 -(I)- 05

* NOTE CHANGE OF “G” SELECTION FROM

 2508 TO F27256, NMOS FUJITSU TYPE.

CMOS PN: DIP MPU’s PN: DIP

NMC6716 —— 23 8741 ——- 10

27C16 —— 24 8742 ——- 13

27C32 —— 25 8748 ——- 10

F27C64 —— 26 8748H ——- 11

27C16H —— 30 8749 ——- 12

27C32H —— 31 8749H ——- 13

iF27C256 —— 37 (WITH 482)

.PA

MPU’s PN: DIP OTHER PN: DIP

8751 —— 32 8755 ——- 29

(WITH 512) (WITH 756)

EEPROMS PN: DIP

5213 —— 34

X2816A —— 35

I2816A —— 36

I2817A —— 38

X2864A —— 39

See the Appendix section on Manufacturer’s cross reference to corre-
late your part number with the appropriate eprom type selection. See
Appendix D to select parts with the copy and verify buttons on single
or double rotary dip switch programmers.

.PA

Software Selection Method:

2732M

EPROM SELECTION MENU

 NMOS NMOS CMOS EEPROM W/ADAPT

A -2758A H -2516 L -27C16 P -5213 R -874x-1K

4 -2758B I -2532 M -27C32 Q -X2816A S -874x-2K

B -2716 J -2564 N -MC6716 Y -I2816A T -874xH-1K

C -2732 K -i68766 5 -27C16H 3 -2817A U -874xH-2K

D -2732A G -F27256 6 -27C32H 9 -X2864A V -8751

E -2764 O -F27C64 W -8755

1 -i2764A Z -i27256 8 -F27C256

F -27128 7 -i27512

2 -i27128A

ENTER SELECTION 2

i27128A_

Results in the programmer giving you a menu of parts to select from.
Refer to the appendix parts list for help in selecting the correct part. At
that time, enter the menu selection number and the prompter will reflect
the part number selection that you made, or dial in the right selection.

.pa

Note: The dip has precedence over the software select. If you set a
device by software, you can reset it with the dip. Positions 02-99 have
precedence over the hardware select position 01. If you select one of
positions 02-99, the programmer will output the new selection to the
terminal. The RS232 menu command is only functional when the
selector is in position 00.

T TOGGLE COMMAND.

 The toggle command is used as a prefix to a subset of commands.
These commands are as follows:

 TC - The TC toggle command is used to turn the compare mode
on and off. When in the compare mode, the command prompter is
prefixed by a lower case c. The compare mode is used to compare
the contents of a device against that of a source file. To use the
compare mode, use the TC toggle to turn on the compare mode. Then
use one of the various programming commands as if you were going
to program the device. Instead of programming the device, the 7956
will make a comparison of the source byte to the contents of the
device. If they are not the same, the comparison error will cause the
led above that particular device will be lit and the programmer will
continue to check the other eproms. See Diagnostics Section for
details.

 TS - The TS toggle puts the 7956 into a split mode used for
programming two eproms whose intended destination is for use in a
true 16 bit data path environment. While in the split mode, the

command prompter is prefixed by either a lower case h or l indicating
high (Odd Address) byte or low (Even Address) byte respectively.
See TB command below. Note that the split mode works on either
Intel Hex type files or Motorola S record type files. It is not functional
from the “P” command.

 TB - The TB command is used in conjunction with the split mode,
TS, to target the selected device for the high (ODD) bytes or low
(EVEN) bytes from an Intel Hex or Motorola S record source file.

 TI - The TI command toggles the programming algorithm
between intelligent and non-intelligent(dumb) on device types 2732,
2732A, 2764, 27128.

 TN - The TN command is used to generate a 16 bit checksum from
the data in the eprom. This is the sum of all the DATA bytes added
together without carry. You may make a checksum between any
two addresses by specifying them like the OI and V and other com-
mands that use a start and end address. The checksum is calculated
for all 9 sockets and then output to the user. See examples of this in
the PGX and PGMX chapters.

.PA

 TR - The TR command resets all toggles above.

’ ’ SPACE COMMAND

 Sending a space (ascii 32 char) to the programmer causes it to
reissue the command prompter.

I IDENTIFY DEVICE TYPE COMMAND.

 The Model 7956 will re-output the command prompter in response
to an I. This may be used by automated programs which need to
have the prompter transmitted to them. Sending the 7956 a carriage
return or a space yields the same results.

X CLEAR ERROR LIGHTS AND RETURN VERSION.

 The X command is used to clear the error lights above the chips
before programming or verifying a chip via software. The X com-
mand will return the following:

 2716X

 GTEK, INC.

 MODEL 7956 Vx.xx

 COPYRIGHT 1983

 2716_

 And the leds will be turned off. When ordering accessories from
GTEK, please remember to include the version and serial number.

$ ABORT COMMAND

 A $ sent to the programmer will abort most operations.

.pa

 III

 DIAGNOSTICS

 General

1) All error codes to be issued by the 7956 are preceded by an
asterisk, “* ”. This makes error trapping very easy.

2) When a non-fatal error, such as won’t program, need erasing or
compare occurs during programming, (WP, NE, CP) the error light for
the associated chip lights.

3) FATAL errors are output on a real time basis, that is, they are output
as soon as they are detected, and the programmer returns to the
command state.

4) Fatal Error codes include the address at which the error occurred.

5)The error lights are cleared only when you issue the “X” command.
This is so that you can issue more than one command, such as the
Verify and Program, so that the error lights will be cumulative.

 Fatal Error Codes

*WP ERR @ nnnn WON’T PROGRAM error

 This error is issued only in the event that all eight slave sockets have
errors.

.pa

*CP ERR @ nnnn COMPARISON error

Issued during comparisons and verifies, but only if ALL eight slaves
fail.

*DT ERR @ nnnn DATA error

 Not valid hex data.

*CS ERR @ nnnn CHECK SUM error

If checksum error is detected in hex record. Only applies to Intel and
Motorola hex format program commands.

*SN ERR @ nnnn SYNTAX error

An invalid command was issued to the programmer. See COMMANDS
section.

*ST ERR @ nnnn STACK error

FIFO overflow. Reduce baud rate or see the interfacing section for
handshaking methods. (The 7956 can take data at 300 bps with no
handshake.)

*UV ERR @ nnnn Un-aVailable error

Issued in the event the user tries to use a function of the programmer
that is not available for that particular device.

.pa

 Non-Fatal Errors

Non-fatal errors are indicated only by the LEDs, no message is output
to the console. These errors are considered non fatal in that the
process continues, i.e. you don’t want to stop programming eight
eproms just because one has failed.

During programming, the error lights indicate that the chip failed to
program. The eprom may have needed erasing, may be no good, the
wrong device type was selected or the device was mis-socketed.

During erasure verification, error lights mean that the chip is not
erased.

During comparisons, error lights mean that the eprom contents differ
from the source.

 Overload Conditions

If a programming voltage overload condition occurs, the program-
mer will issue a continuous tone, indicating an overload on the
programming voltage pin. The tone can be aborted by pressing the
copy or verify button if in the stand alone condition or by issuing a “$”
or other command from the keyboard if in the communication
mode.

Usually, the programmer will have aborted to the command state and
have issued a *WP ERR @ nnnn and lit all the error lights, since
the programming voltage will have been cut short during the last
programming cycle.

Remove the shorted part(s) or make the proper selection for the
chips you are programming or correct the condition that caused the
overload and CAUTIOUSLY try them again. Shorted Vcc pins will not
cause the same kind of overload. Chips will usually fail on the first byte
with this kind of overload, without the continuous tone.

To find a part causing the problem out of 8 parts, take out 4 chips and
try again. If it still errors out, take 2 chips out and try again. If it still errors
out that means that one of the two parts is bad. Take 1 out and try again.
If it still errors out, that must be the bad chip; put the remainder of the
chips back into the programmer and begin again. The Master chip
could cause the problem if it is a 28 pin part.

Remember that the Master Socket may have programming voltage
applied to pin 1. No other pin of the Master Socket gets programming
voltage. This means that you may NOT copy from a 2764A to a 2764,
unless you have taken action to prevent programming voltage from
being applied to pin 1 of the 2764A. You can also get around the
problem by copying the 2764A to a file and then making a 2764 master
chip.

.pa

 IV

 INTERFACING NOTES

The Model 7956 is surprisingly easy to interface to and there are
several methods of handshaking which can be utilized if it is desired to
operate at the higher baud rates. The following section describes some
of the methods.

1.Software handshake. This is perhaps the easiest method of all. When
you begin to send data to be programmed, send the first byte but don’t
wait for it to be echoed. That would effectively cut your communication
rate in half. Instead, send the second byte, receive the first, send the
third byte, receive the second, etc. This technique will allow you to

program as fast as the algorithm in use permits. Some devices pro-
gram faster, some slower! See an example of this in Fig. 4.1

2. CTS/DTR hardware handshaking. The Model 7956 is configured as
data terminal equipment, which means that the CTS (clear to send) line
is an input to the programmmer which when pulled low forces the
programmer to stop sending. On the other hand, the DTR (data terminal
ready) line is an output from the programmer, which will go low when
the buffer contains 4 or more characters and high again when there are
less than 2 characters in the FIFO. If you are using hardware handshake
and the DTR line goes low, you should stop sending to the 7956. The
RTS line is pulled high whenever the programmer is plugged in. See
Specifications for Cable.

3. Xon/Xoff software handshaking. If you do not monitor the DTR line,
the 7956 will transmit an XOFF character if there gets to be 9 characters
in the FIFO. When the FIFO level drops below 6 characters, an XON
will be transmitted. Likewise, when the programmer is sending you
data, you may send an XOFF character, which will stop the program-
mer from sending until it receives an XON character. XON’s and
XOFF’s, are not put into the FIFO, but are processed as soon as they
are received. Even if you don’t use XON/XOFF handshaking, you will
find it useful when using the L, list command, to stop and start the data
flow to your screen. XON and XOFF are the keyboard equivalents of
control-Q and control-S respectively.

4.Please note that the 7956 may communicate at 4 different baud rates.
To initialize at the new baud rate, simply start sending at least 4, and
up to 6 spaces to the programmer at the new baud rate to to communi-
cate at the new baud rate. The programmer will begin reissuing the
prompter in response to the spaces when locked on again.

.pa

Glen:

 figure 4.1 which is the flowchart goes here!

.pa

 V

 AUTOMATION HINTS

When you automate the transfer of data from your computer to the
7228, you should examine the echoed characters to see if an asterisk,
“* ” has been sent. If you receive one, it means that an error message
will follow and that the programmer will return to the command state.
Any automation software should take this into account.

The effective addressing range of a device is determined by it’s size. If
a 2K byte device is being used, then it only has 11 significant address
lines and only the lowest 11 bits of the address field are significant.
Thus, as far as the 7228 is concerned, 000H is equivalent to 800H or
F000H in a 2K device.

You don’t need to compare the characters that are echoed to what you
sent. The characters are echoed to the host as they are removed from
the FIFO, and would not reflect a programming error. However, the
7228 will detect any programming error and the host need only trap
the error message. The PGX utilities for CP/M and MSDOS based
computers send echoed characters to the screen (console). PGMX,
due to its high baud rates, does not attempt to display all the information
being transferred.

The programmer is in the command state after the prompter is sent.
The prompter always ends with a ’’. You can use this character to let
your program know that an R, OI, OM, OT, V, or L command has
finished.

You should probably have one mode of operation where you communi-
cate directly with the programmer (turn your computer into a terminal).
This will give you easy use of the L, V, P, and M commands.

.PA

 VI

 SPECIFICATIONS

DIMENSIONS: (H x W x D)

 2.5" x 12.0" x 7.5"

 (63.5mm x 304.8mm x 190.5mm)

POWER:

120VAC, 60HZ, 25 VA (240Vac, 50Hz, option)

INTERFACE:

DB25P - data terminal equipment (see below).

DATA WORD:

1 Start, 8 Data, 1 Stop, No parity

BAUD RATE:

 Auto select 300, 600, 1200, 2400

WEIGHT:

 5 Pounds (2.4 KG)

OPERATING ENVIRONMENT:

 45 - 95 DEG F. (7 - 35 DEG C.)

 5% TO 95% non-condensing relative humidity

CABLE:

DTE programmer dte computer dce

 1- Equip Ground (EG)—1 (EG) - 1 (EG)

 2- Transmit Data (TXD)——3 (RXD) - 2 (TXD)

 3- Receive Data (RXD)- 2 (TXD) - 3 (RXD)

 4- Ready To Send (RTS)——6 (DSR) - 4 (RTS)

 5- Clear To Send (CTS)-20 (DTR) - 5 (CTS)

 6- Data Set Rdy (DSR)——4 (RTS) - 6 (DSR)

 7- Signal Ground (SG)—7 (SG) - 7 (SG)

20- Data Term Rdy (DTR)——5 (CTS) - 20 (DTR)

.pa

 MAKING A CABLE.

Refer to the Specifications section for information on making a cable
for other than an IBM PC.

IBM PC DB25 FEMALE PROGRAMMER DB25 FEMALE

EG 1————————1 EG

TXD 2————————3 RXD

RXD 3————————2 TXD

CTS 5————————20 DTR

SG 7————————7 SG

DTR 20———————-5 CTS

DSR 6————————4 RTS

RTS 4————————6 DSR

HOOK UP FOR IBM PC-AT 9 PIN DB TO 25 PIN DB

AT DB9 MALE: PROGRAMMER DB-25 FEMALE

CD 1—-nc

RXD 2—————2 TXD

TXD 3—————3 RXD

DTR 4—————5 CTS

SG 5—————7 SG

DSR 6—————4 RTS

RTS 7—————6 DSR

CTS 8—————20 DTR

RD 9—-nc

.PA

 VII

 HEX FORMATS

 INTEL FORMAT

 DATA RECORD

Byte

1 Colon (:)

2..3 Number of binary data bytes

4..5 Load address, high byte

6..7 Load address, low byte

8..9 Record type

10..x Data bytes, 2 ASCII-HEX characters

x+ 1..x+ 2 Checksum, two ASCII-HEX characters

x+ 3..x+ 4 CR,LF

 END RECORD

Byte

1 Colon (:)

2..3 Record length, must be “00"

4..7 Execution address

8..9 Record type

10..11 Check sum

12..13 CR,LF

 EXTENDED ADDRESS RECORD (MCS-86 HEX FORMAT)

Byte

1 Colon (:)

2..3 Record length, should be “02"

4..7 Load address field, should be “0000"

8..9 Record type, must be “02"

10..13 USBA

14..15 Check sum

16..17 CR,LF

.PA

 START ADDRESS RECORD (MCS-86 FORMAT)

Byte

1 Colon (:)

2..3 Record length, “04"

4..7 “0000"

8..9 Record type, “03"

10..13 8086 CS value

14..17 8086 IP value

18..19 Check sum

20..21 CR,LF

The checksum is the two’s compliment of the 8- bit sum, without carry,
of all the data bytes, the two bytes in the load address, and the byte
count.

 MOTOROLA FORMAT

 COMMENT RECORD

Byte

1..2 “S0"

3..n comment field

x+ 1..x+ 2 CR,LF

 DATA RECORDS

Byte

1..2 “S1"

3..4 Number of data bytes + 3.

5..6 Load address, high byte.

7..8 Load address, low byte.

9..x Data bytes, 2 characters each.

x+ 1..x+ 2 Checksum.

x+ 3..x+ 4 CR,LF.

.pa

Byte

1..2 “S2"

3..4 Number of data bytes + 4.

5..10 Load address, 24 bits

11..x Data bytes, 2 characters each.

x+ 1..x+ 2 Checksum.

x+ 3..x+ 4 CR,LF.

Byte

1..2 “S3"

3..4 Number of data bytes + 5.

5..12 Load address, 32 bits

13..x Data bytes, 2 characters each.

x+ 1..x+ 2 Checksum

x+ 3..x+ 4 CR,LF.

 END RECORD

Byte

1..2 “S9"

3..4 CR,LF.

In the above S records, the byte count includes the load address and
checksum. Thus the byte count is equal to the number of data bytes
plus the following; 3 for S1, 4 for S2 and 5 for S3 type records. The
checksum is the one’s compliment of the 8-bit sum, without carry, of
the byte count, the two bytes of the load address, and the data bytes.

.pa

 TEKTRONIX HEX FORMAT

 DATA BLOCKS

Byte

1 Header which is a Slash (/)

2..5 Location counter which is 4 ascii hex bytes representing the load
address of the data bytes.

6..7 Byte count which is 2 ascii hex bytes specifying # of binary data
bytes in the data field of the block.

8..9 First Checksum which is 2 ascii hex bytes specifying the HEX
SUM of the values of the previous six digits. (location counter and the
byte count)

10..X Binary data bytes which are each represented as 2 ascii hex
digits. (in other words 16 binary bytes are represented as 32 ascii
bytes.)

X+ 1..X+ 2 Second Checksum. 2 ascii hex bytes representing the SUM
modulo 256 of the binary values of the ascii data bytes. (8 bit sum
without carry.)

X+ n Always a carriage return.

 TERMINATION BLOCK

Byte

1 Header (/) slash

2..5 Transfer address which is the address for execution of code,
probably 0000 in most cases.

6..7 Byte count, always 00 for a termination block.

8..9 Checksum of the six digits that make up the transfer and byte
count which is probably 00 in most cases.

10 Always a carriage return.

 ABORT BLOCK

Byte

1 Header (/) slash

2 Header (/) slash

3..X+ 69 Message up to 69 characters for error information etc.

X+ 70 Always a carriage return.

Example of Data block and 1 Abort block

/000010100102030405060708090A0B0C0D0E0F0038

//THIS IS AN ERROR MESSAGE HERE

Note: programmer will issue a *DT error on the second “/” mark and
return to the command state without displaying the abort message...

Example... of Data block and 1 Termination block

/000010100102030405060708090A0B0C0D0E0F0038

/00000000 (CARRIAGE RETURN)

NOTE: Most terminals will display Tektronix data only on one line, since
the format calls for only a carriage return at the end of a record.

.pa

 VIII

 USING INTERFACE PROGRAM PGX

 INSTALLATION OF PGX

PGX (for MS/PC DOS or CP/M) is sold as an option to the programmer.
It is a communication program which enables you to do 3 basic things:

1) Communicate with the programmer. We call this the interactive
mode.

2) Program Eproms from an Intel Hex file.

3) Read Eprom Data into an Intel Hex file.

The GHEX program allows you to convert a binary or executable file
into an Intel Hex file to send to the programmer.

On the DOS PGX program disk you will have several files:

 1- PGX12.EXE Use with COM1: and 7128

 2- PGX12ALT.EXE Use with COM2: and 7128

 3- PGX24.EXE COM1: WITH 7956, 7956, 9000

 4- PGX24ALT.EXE COM2: WITH 7956, 7956, 9000

 5- GHEX.EXE Convert binary to HEX

 6- PGX.OBJ Main object file

 7- UART1200.OBJ RS-232 driver object file

 8- READPGX.ME Instructions for use

 9- RUN7128.BAT Batch file to install .OBJ’s

10- DEBUG.TXT Instruction Tutorial

11- PARTS.LST Parts Cross-Reference

On the CP/M program disk you will have different programs depending
on what type of computer you are using. A “generic” CP/M program
disk will have at least 3 programs:

 1- PGX.COM Communication(Rdr/Pun I/O)

 2- GHEX.COM Convert Binary to Hex

 3- READPGX.ME Installation Instructions

 4- SID.TXT Tutorial with SID.COM

 5- DDT.TXT Tutorial with DDT.COM

 6- PARTS.LST Parts Cross-Reference

 7- RDRPUN.HEX Reader/Punch driver (inst.)

 8- IOB.ASM Source code for I/O Byte dvr.

 9- ZILOG.ASM Source code for Uart driver.

10- PGXBAT.COM Assembled Batch I/Ob driver.

11- PGXCRT.COM Assembled CRT I/Obyte driver.

12- PGXTTY.COM Assembled TTY I/Obyte driver.

13- PGXUC1.COM Assembled UC1 I/Obyte driver.

14- RDRPUN.SUB Submit file to install RDR/PUN

15- IOBYTE.SUB Submit file to install IOB.HEX

16- ZILOG.SUB Submit to install ZILOG.HEX

The first thing you should do is back up your master disk. If you have
a hard disk, we suggest that you make a sub-directory and copy the
files from your master disk to the newly created sub-directory. (See
your DOS manual on how to make a sub-directory.)

Under CP/M, PIP the master disk to your hard disk or create a new disk
and PIP the programs to it.

Example for DOS:

C:\MD GTEK

C:\CD GTEK

C:\GTEKCOPY A:*.*

Example for CP/M:

APIP B:=A:*.*[R

The end result will be having a copy of the programs from the master
disk on a working area of the hard disk or on a working disk. Store the
original copy of our programs in a safe place. Make a note of the serial
number from the label to have it handy when you call GTEK for upgrade
information or to ask questions about the operation of the program. A
good place would be in the NOTES section in the back of this manual.

Now, on your working copy, you may delete the programs that you
don’t need to use the programmer.

 1- Select the program that you will be using with the programmer,
PGX24.EXE for com1: and a 7956 for instance. Under CP/M, select the
program that you need to use or install PGX.COM for the driver that
you need to use. PGX.COM under CP/M comes installed with
Reader/Punch drivers. See the READPGX.ME file for installation in-
structions under CP/M.

 2- Rename the program so that the instructions match the name of
the program on your disk:

 DOS: CREN PGX24.EXE PGX.EXE

 CP/M: AREN PGX.COM = PGXUC1.COM

.pa

 3- Copy the programs to the disk or sub- directory that you will be
using it from.

 DOS:C:\ GTEKCOPY PGX.EXE \ WORKAREA

 or A:COPY PGX.EXE B:

 CP/M: APIP B:= A:PGX.COM

When you are using DOS on an IBM or Compatible, you should be
aware that PGX is an interrupt driven program. CP/M PGX is a “polled”
version.

IRQ4 is used in conjunction with an interrupt service routine for COM1:
when PGX is invoked. This is a hardware line on your PC to give the
system an interrupt whenever a character is received. If you know that
something else in your computer is using this hardware interrupt line,
then you should use the other com line, which uses IRQ3 (COM2:).

IRQ3 is also used in the same manner for COM2: when PGX is invoked.
If you know something in your system uses IRQ3 for interrupts, then
you must use the other com port.

 OPERATION

PGX is a “command” driven program as opposed to a “MENU” driven
program, which means that everything you do is done by entering a
“command” from the DOS or CP/M command line instead of selecting
the command from a menu. This makes the program very fast when
you have learned what the commands are.

.pa

In most cases the commands are exactly the same command as what
the programmer is expecting so the selection of the command is
somewhat intuitive.

When you invoke the PGX program from the following examples, the
log-on messages may not be identical to the messages displayed here,
but they will be very similar.

There are 3 modes from the DOS or CP/M command line that you may
enter:

1- Communication or Interactive mode:

CPGX

GTEK Programmer Interface Package Version 5.04

Copyright 1983, GTEK, INC.

X

GTEK, INC.

MODEL 7956 V2.30

COPYRIGHT 1983

xxxx_

The above example when invoked puts you into a mode where you
may simply communicate with the programmer to issue commands

such as M, L, V, P, etc. Control returns to DOS or CP/M when you issue
a Control-C from the command prompter or during any programmer
operation being performed from this mode.

.pa

2- Program mode:

CPGX filename [options]

GTEK Programmer Interface Package Version 5.04

Copyright 1983, GTEK, INC.

X

GTEK, INC.

MODEL 7956 V2.30

COPYRIGHT 1983

xxxxoptions

EPtype:10000000 etc....

:0000000000

type

C_

The above example shows how an eprom may be programmed from
the DOS or CP/M command line. See the following text about OPTIONS
to understand what they are. The above operation may be aborted to
DOS or CP/M at any time by a control-C. You may invoke this operation
from the DOS or CP/M command line ONLY, not from within PGX
(interactive mode).

.pa

3- Read mode:

CPGX filename [options]

GTEK Programmer Interface Package Version 5.04

Copyright 1983, GTEK, INC.

X

GTEK, INC.

MODEL 7956 V2.30

COPYRIGHT 1983

xxxxoptions

typeOI

:10000000 etc....

:0000000000

type

C_

The above example shows how an Intel Hex disk file may be created
from an eprom in the programmer. See the following text about
OPTIONS to understand what they are.

 DEFINITIONS

Please note that the listed commands are generally passed on to the
programmer unchanged except for the order in which they appear in
the command line. PGX will send the commands specified to the
programmer in the following order:

1 - menu command

2 - toggle commands (except TN is done last)

 (TN not available under CP/M)

3 - verify erasure

4 - program or read

5 - checksum (tn)

.pa

Some options, particularly the “R” option, work differently from the
programmer “R” command.

The “@” command is not a valid command for the programmer except
on the DOS or CP/M command line. The “@” command is used to give
PGX information, not the programmer.

You may not specify any command more than once inside the brackets
except for 2 toggle commands under DOS and 1 toggle command
under CP/M.

sssss= starting address, up to 24 bits worth of ascii-hex charac-
ters (16 bits for CP/M).

eeeee = ending address, up to 24 bits worth of ascii-hex characters
(16 bits for CP/M).

oooo = offset amount, 16 bits worth of ascii- hex characters

Delimiter = a dash (-), a comma (,), a space (), a carriage return (ascii
character number 0dh), or a line feed (ascii character number 0ah).
Carriage return and line feed are represented by a
 or .

FILENAME = a valid DOS filename to be used by PGX to look for a file
on the disk. PGX will automatically supply a .HEX extension and look
for a .HEX even if you specified an extension.

 AND REMEMBER!

The effective addressing range of a device is determined by it’s size. If
a 2K byte device is being used, then it only has 11 significant address
lines and only the lowest 11 bits of the address field are significant.
Thus, as far as the 9000 is concerned, 000H is equivalent to 800H or
F000H in a 2K device.

 VALID OPTIONS FOR PGX

1- Any valid programmer command except OI, OM, OT, R

2- @sssss-eeeee

 An @ symbol followed by the starting address (sssss) followed by a
dash (-) followed by the ending address (eeeee) will cause the incoming
data from the Intel Hex File to be sent to the specified locations. The
@ symbol means that PGX will search the Intel Hex file for data located
between the start address (sssss) and the end address (eeeee) and
send that data to the same locations within the eprom. Remember that
if the address range for that eprom is exceeded by the specified range
of addresses then the data will “wrap-around” to the beginning of the
eprom or to an address modulo eprom size.

The OPTIONS for PGX are always issued on the DOS or CP/M com-
mand line and are as follows:

R - read file. (default is program mode)

m bounds

M - menu selection

T - toggle command

V - verify erasure

These OPTIONS must be within two square brackets separated from
the filename by a space. The general usage is as follows:

CPGX filename [OPTIONS]

 INTERACTIVE EXAMPLES:

CPGX

From the DOS command line, this establishes communication with the
programmer and after the log-on message, displays the Programmer
Command Prompter, which is the currently selected eprom type or
xxxx, which means that you must first select an eprom type. The
programmer at this point is waiting to accept a valid command.

2732TN

F000 F000 F000 F000 F000 F000 F000 F000 F000

2732_

In this example, the checksum command was issued from the
programmer command state, causing it to do a 16 bit checksum on
the selected part (empty sockets or blank parts, which have a check-
sum of F000).

2732VF00-FFF

2732_

In this example, the programmer was commanded to check the part
to see if it was blank within the range of F00 up to and including address
FFF. Error lights indicate unerased.

 PROGRAMMING EXAMPLES:

The options are always set off by an opening square bracket ([) and
the ending square bracket (]). Invalid commands result in an error
message and a return to DOS or CP/M. It should be noted that any
ascii-hex characters used in boundaries should be upper case.

CPGX filename [TI,ME,V,@00000-00FFF]

 (or)

CPGX filename [@0-FFF, ME, TI, V]

 (same results)

In the above examples, PGX will first log-on with the programmer and
send the following (in bold face):

(log-on message)

GTEK, INC.

MODEL 7956 V2.30

COPYRIGHT 1983

xxxxME

2764TI

i2764V0000-0FFF

(sends nothing if blank, otherwise it will send *CP ERR @ address
/lf) if all 8 fail.

i2764:10000000xx... Intel Hex data here

if at least 1 eprom was blank, up to end record...

:0000000000

i2764
/lf

C_

PGX first sent the eprom Menu command to select the eprom type,
then sent the Verify command @ the specified addresses 000 through
and including FFF to the programmer. If the eproms were not blank,
the result would be for the programmer to output the message *CP
ERR @ nnnn to the console if all fail, and you will return to the DOS or
CP/M command prompter. If at least one eprom was blank, (the rest
have error lights lit above them) as each option is finished, PGX sends
the next option in order of priority. If a mistake is made within the
OPTIONS bracket PGX will issue an OPTION ERROR message and
return to DOS or CP/M. This command may be aborted by typing a
control - C on the keyboard.

 READING EXAMPLE:

CPGX filename [R,MF]

In the above example, PGX will first select the eprom type (MF) and
then issue an OI (Output Intel) to the programmer. The programmer
will respond by selecting the eprom type (27128) and then outputting
16 byte long INTEL.HEX records read from socket E7 until the end of
the eprom is reached (0000-3FFF). PGX will then write the INTEL.HEX
records to the disk. If there is not enough room in memory to hold the
entire file, a handshake will cause the programmer to stop sending and
write the data to the disk. This command may not be aborted by a
control - C after it is started.

The CP/M version of PGX will not allow you to read an eprom bigger
than about a 27128. If you do it will tell you to read shorter segments.
With a 27256 for instance, read it from 0-3FFF and then from 4000-7FFF.

 MORE EXAMPLES:

To program 3 2716’s from a binary file that contains 1093H bytes. User
input is underlined and PGX input is boldface:

CGHEX TEST.BIN

CPGX TEST [@0-7FF,MB,V]

(Log on message)

xxxxMB
/lf

2716V0000,07FF
/lf

2716:10 etc...

:0000000000
/lf

2716
/lf

Cpgx test [@800-FFF,V]

(Log on message)

2716V0800,0FFF

2716:10 etc...

:0000000000
/lf

2716
/lf

Cpgx TEST [@1000-1FFF]

(Log on message)

2716:10 etc...

:0000000000
/lf

2716
/lf

C_

In the above example, we first created an INTEL.HEX file from the binary
file TEST.BIN. We then told PGX to send the Menu command for a 2716
eprom (MB) to the programmer, Verify that the part was blank between
the load addresses 0000H through 07FFH. PGX then sent all the data
that was found in the file TEST.HEX between the locations 0000H
through 07FFH to the programmer.

After the first section was completed, we then told PGX to Verify that
the part is blank between the addresses 0800H through 0FFFH within
the eprom (remember that the address 0800H is not significant to this
eprom- 0000H is really the same address as 0800H in this eprom). PGX
then sent all the data that was found in the file TEST.HEX between the

locations 0800H through 0FFFH to the programmer. Remember that
the programmer keeps the type selection in it’s prompter, so you don’t
have to keep re-selecting the eprom type every time, unless you are
using different eproms every time. If you do keep selecting the eprom
type, it is a cheap form of insurance.

After the second section was completed, we then told PGX to send all
the data that was found in the file TEST.HEX between the locations
1000H through 1FFFH. You might remember that there are only 93H
bytes left to send. When PGX finishes sending what’s left in the file
(1000H to 1093H), it encounters an END record in the file, which causes
PGX to return to DOS (or CP/M).

Automating the process could be accomplished with a batch file such
as this:

TEST.BAT

PGX TEST [@0-7FF,V,MB]

pause remove eprom, insert new blank

PGX TEST [@800-FFF,V]

pause remove eprom, insert new blank

PGX TEST [@1000-1FFF]

echo now you are done.

In particularly large files, PGX may take some time to search through
the whole file, so if you are programming a 2732 from a file that is 32K
long and specify that you want to send 7000H through 7FFFH (@7000-
7FFF), it could take a while for PGX to scan from the beginning through
to 7000H.

See the Chapters on GHEX and DEBUG also.

.PA

 IX

 USAGE OF GHEX.EXE

GHEX.EXE is a program provided for you to be able to convert a binary
file into an INTEL.HEX file. This capability is built-in to the PGMX.COM
program, but you may want to use it for convenience.

General usage is:

GHEX filename.ext

.uj 0

OR

GHEX filename.ext offset

Offset is an ASCII-HEX number that specifies where you want your code
to begin in the HEX file.

GHEX filetest.bin

Will result in an INTEL.HEX file being created on your disk by the name
filetest.hex. The load addresses begin at 0000H since no offset was
specified. GHEX does not destroy the input file.

GHEX filetest.bin AA55

Will result in an INTEL.HEX file being created on your disk by the name
filetest.hex, just like before except the load addresses start at AA55H.

.PA

 X

 USING DEBUG.COM

You may use DEBUG.COM (supplied with PC-DOS) in conjunction with
our GHEX.EXE to modify an INTEL.HEX file without worrying about the
checksums in the INTEL.HEX file.

The following is a short tutorial to modify a 4K byte INTEL.HEX file with
DEBUG. The procedure is to run DEBUG first.

DEBUG

-_

From the - prompter within DEBUG use the N command to specify the
name of your INTEL.HEX file.

-Nfilename.HEX

-_

Use the L command to load the hex file with an offset (if it begins at
0000H). You must do this since if it starts loading at 0000H within the
segment, it will overwrite your file control block at 5Ch.

-L 100

-_

The CX register now contains the number of bytes read into memory
with an offset of 100. You may have to modify the CX register to
properly reflect the correct number bytes you must write back to the
disk. Remember that this is going to write from CS:CX when you issue
the command.

-RCX

CX: 1000

-_

Your data is now loaded into the memory of the computer at offset
100H. Use the E command to modify the bytes you need to modify. An
example of modifying locations starting at 0A55H with data is shown.
Locations A55H through A57H contain FFH.

-EA55 01 02 03

-_

Now specify a new file name to write to the disk with since you can’t
use an extension of HEX with the file you are writing. You want to call
it a BIN or IMG file instead since that is what the data really is anyway.

-NNEWFILE.BIN

-_

Now you can use the Write command to write the new data to the disk.
DEBUG will write an exact image of CS:CX bytes to the disk starting at
an offset of 0100H bytes.

-W

Writing 1000H bytes

-_

Now use GHEX to make it an INTEL.HEX file, or use PGMX’s binary file
transfer.

.PA

 XI

 USING INTERFACE PROGRAM PGMX

 INSTALLATION of PGMX

PGMX, sold separately, is a high speed communication program which
runs on IBM PC’s and AT’s. It allows flexible manipulation, transmission
and reception of Intel HEX files and binary files.

On the PGMX program disk you will have 3 programs: PGMX.COM,
PINSTALL.COM and GHEX.EXE. PGMX is the program used to com-
municate with your programmer. PINSTALL is the program that you
must run to install the serial drivers in PGMX so that you can communi-
cate with the programmer.

If you try to run the PGMX program without installing the serial drivers,
it will tell you to run the PINSTALL program. Remember that the PGMX
license is a single user license. If you buy the programmer now and
later on wish to purchase the software, be sure to have the CORRECT
serial number ready.

Insert GTEK program disk in drive A: and copy the programs to your
hard disk with:

CCOPY A:*.*

This will copy all the programs on the GTEK disk over to the subdirec-
tory that you are logged on to on your hard disk. If you don’t have a
hard disk, use DISKCOPY or COPY to the B: drive. Refer to the DOS
manual for specific instructions on using the COPY command. The
desired end result is a backing up of the original GTEK copy. Store the
original program disk in a safe place.

Now you should insert the backup copy in the drive A: and/or go to the
subdirectory where PINSTALL and PGMX are located. You must first
run the PINSTALL program to install the serial drivers for PGMX.

CPINSTALL

After the copyright and version number appears, you are asked to
select a letter which corresponds to the type of installation you wish to
perform.

Most people will probably select to set up to communicate at 2400 baud
on computer serial port COM1: or the selection for 2400 baud on
COM2:

IRQ4 is used in conjunction with an interrupt service routine for COM1:
when PGMX is invoked if you installed it for COM1:. This is a hardware
line on your PC to give the system an interrupt whenever a character
is received. If you know that something else in your computer is using
this hardware interrupt line, then you should use the other com line,
which uses IRQ3 (COM2:).

IRQ3 is also used in the same manner for COM2: when PGMX is
invoked if you installed it for COM2:. If you know something in your
system uses IRQ3 for interrupts, then you must use the other com port.

The next selection that you have to make is where your line printer is
located, on parallel port 1, 2, or 3 (lpt1:, lpt2: or lpt3:). This has to be
done so that PGMX knows where to send printed data.

After you have made that last selection, you are returned to the DOS
command prompter and PGMX is set up to run under those conditions
that you specified.

See the example for CPGMX
 later in the manual.

 OPERATION

PGMX is a “command driven program” as opposed to a “MENU driven
program” which means that everything you do is done by entering a
“command” on the command line instead of “selecting” the command
from a menu. This makes the program very fast when you have learned
what the commands are.

In most cases the commands are exactly the same command as what
the programmer is expecting, so the selection of the command is
somewhat intuitive.

There are 2 ways that commands may be given to PGMX:

1- From the PC or MS DOS command line.

2- From within PGMX.

Commands executed from DOS return to DOS upon completion.
Commands executed from within PGMX return to PGMX upon com-
pletion. Command lines may be entered from within PGMX by
depressing control F.

EXAMPLES:

CPGMX

Enter PGMX and establish communication with the programmer (as-
suming everything is hooked up properly).

CPGMX FILENAME

Results in communication being established with the programmer and
sending FILENAME.HEX (Intel Hex Format) from the disk to the pro-
grammer. When PGMX is through, you are returned to the DOS system
prompt.

CPGMX FILENAME [OPTIONS]

Results in PGMX establishing communication with the programmer,
and then performing according to selected options.

Programming the eprom in binary or Intel Hex format or Reading the
eprom in the same formats may be accomplished by giving the proper
options. OPTIONS are always enclosed in square brackets and
separated by comma’s. Invalid commands result in an appropriate and
descriptive ERROR message.

 VALID OPTIONS

R - read file. (default is program mode)

%ooooo - binary mode select (default is HEX)

m bounds

Mx - menu selection

Tx - toggle command (3 max on command line)

V - verify erasure

MORE EXAMPLES

PGMX
 from the DOS command line establishes communication with the
programmer, and after log-on displays the Programmer Command
Prompter, which is the currently selected eprom type.

 LOG ON MESSAGE EXAMPLE

High Speed Interface Package Version 2.01/

Copyright 1983, 1984, 1986 GTEK, INC.

All Rights Reserved, worldwide.

I/O Hardware Driver Vers 1.01 - IBM PC/AT

Serial port - COM1, 2400 bps

Printer port - LPT1:

GTEK, INC.

MODEL 7956 V2.30

COPYRIGHT 1983, 1986

xxxx_

The programmer is ready and waiting for a command at this point. If
you want to do a Menu command, pressing an M and the code
necessary will select an eprom type or press M
 to get a menu:

.pa

2732M

EPROM SELECTION MENU

 NMOS NMOS CMOS EEPROM W/ADAPT

A -2758A H -2516 L -27C16 P -5213 R -874x-1K

4 -2758B I -2532 M -27C32 Q -X2816A S -874x-2K

B -2716 J -2564 N -MC6716 Y -I2816A T -874xH-1K

C -2732 K -i68766 5 -27C16H 3 -2817A U -874xH-2K

D -2732A G -F27256 6 -27C32H 9 -X2864A V -8751

E -2764 O -F27C64 W -8755

1 -i2764A Z -i27256 8 -F27C256

F -27128 7 -i27512

2 -i27128A

ENTER SELECTION 2

i27128A_

Results in the programmer giving you a menu of parts to select from.
Refer to the appendix parts list for help in selecting the correct part. At
that time, enter the menu selection number and the prompter will reflect
the part number selection that you made, or dial in the right selection.

.pa

i27128ATN

C000 C000C000 C000 C000 C000C000C000 C000

i27128A_

Results in the programmer giving you a 16 bit addition of all the 8 bit
bytes of all the parts in all 9 sockets, without carry. Blank 27128s give
you C000 for the checksum.

i27128A(control)

Control- generally means to press and hold the CONTROL key on your
keyboard and press a command letter. Valid command letters are P, F
and C. The ESCape key is also a valid control command key, but you
do not hold the control key down to press ESC. The ESC key is a valid
control character already. The escape control command may also be
obtained by pressing CONTROL [on the IBM keyboard or by holding
down the ALT key and entering027 on the numeric keypad. Pressing
and holding the CONTROL key is represented by a caret and the letter
that must also be pressed, eg. ^C.

The definitions of the CONTROL commands are:

^P -start sending / stop sending (toggle) data simultaneously to the
printer.

^ F-enter a command line. Examples follow.

^C -Abort most programmer commands and return to the DOS
command prompter or PGMX. This command will work even though
you may be in the process of programming, reading, verifying, etc., an
eprom.

ESC or ^ [- Escape from program. This command is used as an
alternative to control- alt-del and is not normally used. This is an
EMERGENCY command and the results could be unpredictable.

 USING control F

2716^F

Enter Command line FILENAME [@0-1FF,V,TN

Results in PGMX doing a blank check on the eprom between 0 and 1FF
inclusive. Then FILENAME.HEX is opened and any hex data falling
between the specified boundaries is sent. During data transfer, PGMX
displays the load addresses of the hex records that it is sending. Finally,
the checksum is calculated between the specified addresses and
displayed.

The options are always set off by an opening square bracket ([) and
the ending square bracket (]) is optional. Invalid commands result in
an error message and a return to the programmer command prompter.
You could do the same example above with PGX, except you must
issue the command line from the DOS prompter.

 DEFINITIONS

Please note that the listed commands are generally passed on to the
programmer unchanged except for the order in which they appear in

the command line. PGMX will send the commands specified to the
programmer in the following order:

.pa

1 - menu command

2 - toggle commands (except TN is done last)

3 - blank check or verify erasure

4 - program or read

5 - checksum (tn)

Some commands, particularly the “R” command, work differently from
the programmer command “R”. The “%” and the “@” command are
not valid commands for the programmer except on the command line.
They are used to give PGMX information, not the programmer. You
may not specify any command more than once inside the brackets
except the toggle commands, and you are allowed a maximum of 3 of
those.

sssss = 24 bit starting address, Hex chars.

eeeee = 24 bit ending address, Hex chars.

ooooo = 24 bit offset amount, Hex Chars

Delimiter = a dash (-), a comma (,), a space (), a carriage return (ascii
character number 0dh), or a line feed (ascii character number 0ah).
Carriage return and line feed are represented by a
 or .

FILENAME = a valid DOS filename to be used by PGMX to look for a
file on the disk. In case that a percent (%) sign was specified then the
filename specified will be taken literally. In other words you must be
explicit and give the extension of the filename also. If the percent sign
was not specified then PGMX will automatically supply a .HEX exten-
sion and look for a .HEX even if you specified an extension.

.pa

EXT = a valid DOS extension for the filename in your directory. You
are allowed to use any extension you wish here, (in the binary % mode)

and the data will be sent to the programmer UNCHANGED. The EXT
will only be valid when you have specified a percent sign (%) within the
brackets.

 AND REMEMBER!

The effective addressing range of a device is determined by it’s size. If
a 2K byte device is being used, then it only has 11 significant address
lines and only the lowest 11 bits of the address field are significant.
Thus, as far as the 7956 is concerned, 000H is equivalent to 800H or
F000H in a 2K device.

 VALID COMMANDS FOR PGMX

1- Any valid programmer command except OI, OM, OT, R. This applies
to PGX also.

2- @sssss-eeeee

 An @ symbol followed by the starting address (ssss) followed by a
dash (-) followed by the ending address (eeee) will cause the incoming
data from the Binary or Intel Hex File to be sent to the specified
locations. In the case of a binary file (specified by a % on the same
command line only), the @ symbol means that the data specified by
the % sign will go to the ssss-eeee specified by the @ sign within the
eprom. In the case of an Intel Hex file (no %), the @ symbol means
that PGMX will search the Intel Hex file for data located between the
start address (ssss) and the end address (eeee) and send that data to
the same locations within the eprom. PGX supports this, except for the
binary transfer usage.

3- %ooooo

 A percent sign (%) followed by an offset (you may omit specifying an
offset of 0, but PGMX may warn you that you did not specify it, just in

case you forgot) will cause PGMX to treat the EXTension you specified
literally (and not add a .HEX extension). PGX does not support this.

.uj 0

EXAMPLES:

To program 3 2716’s from a binary file that contains 1093H bytes:

xxxxMB

2716^F

Enter Command line —TEST.BIN[%0,@0-7FF

Causes PGMX to look for a file called TEST.BIN on the disk, and when
found start sending from relative offset location 0 within TEST.BIN to
locations 0 through 7FFh within the eprom. The number of bytes sent
is the number of bytes between 0 to 7FFh inclusive. If you don’t specify
boundaries, you will “Wrap Around” to location 000H at location 800H
because you are still sending data to the programmer through PGMX.

.pa

2716^F

Entercommandline—TEST.BIN[%800,@0-7FF

Causes PGMX to look for a file called TEST.BIN on the disk, and when
found start sending from relative offset 800H from within TEST.BIN to
locations 0 to 7FFh within the eprom.

2716^F

Enter command line -TEST.BIN[%1000,@0-7FF

.uj 0

Causes PGMX to look for a file called TEST.BIN on the disk and when
found start sending from relative offset 1000H from within the TEST.BIN
to locations 0 through 7FFh within the eprom. However, the program

will terminate when it encounters the end of the file you are sending
from, since there are only 94H bytes left in the file TEST.BIN left to send.

Automating the process could be accomplished with a batch file such
as this:

TEST.BAT

pgmx test.bin[mb,v,@0-7ff,%%0,tn

pause remove eprom, insert new blank

pgmx test.bin[v,@0-7ff,%%800,tn

pause remove eprom, insert new blank

pgmx test.bin[v,@0-7ff,%%1000,tn

echo now you are done.

(use 2 percents (%%) in a batch file)

Reading an eprom to a disk file is accomplished with the ’R’ option.

pgmxfilename[r

Results in reading the selected eprom to the Intel hex disk file,
FILENAME.HEX.

pgmx filename[r,%

.uj 0

Results in reading the selected eprom to a binary disk file whose name
is FILENAME. (no extension was specified.). Notice an offset value
included with the % has no meaning

during a read operation.

pgmx [tn,ma or ^ F[tn,ma from within PGMX

Results in selecting 2758 (note menu selection has side effect of
resetting all toggles) and calculating the checksum.

 ADVANCED EXAMPLE

pgmx filename[mz,ts,v,tn,@20000-2FFFF

Results in selecting 27256, split mode, doing a blank check, program-
ming the eprom with hex data residing between the 20 bit addresses
of 20000 and 2FFFF inclusive, and calculating it’s checksum.

.uj 0

This particular file is big. Don’t be afraid that PGMX has hung up. It has
to check the load addresses of every record in the file, and it would
take a minute before it reached records at load address 20000, unless
the file was created with an “exotic” compiler in such a manner that
segment records with apparently random addresses are placed at
apparently random locations every few records in the file. No joke
intended.

.pa

The boundaries specified cover a 64k range, but the eprom is only 32k.
The reason for this is that in the split mode, the 2 eproms are considered
as one eprom of twice the size. However, if an error message is issued
during programming in the split mode, the address given by the error
message is the physical address in the single eprom.

.PA

 XII

 WARRANTY AND SERVICE

 LIMITED WARRANTY

GTEK, INC., warrants to the original purchaser of this GTEK, INC.,
product that it is to be in good working order for a period of 90 days
from the date of purchase from GTEK, INC., or an authorized GTEK,

INC., dealer. Should this product, in GTEK, INC.’s opinion, malfunc-
tion during the warranty period, GTEK will, at its option, repair or
replace it at no charge, provided that the product has not been
subjected to misuse, abuse, or non-GTEK authorized alterations,
modifications, and / or repairs.

Products requiring Limited Warranty service during the warranty period
should be delivered to GTEK with proof of purchase. If the delivery is
by mail, you agree to insure the product or assume the risk of loss or
damage in transit. You also agree to pre-pay the shipping charges to
GTEK. GTEK agrees to pay return freight (in the continental USA) by
UPS surface on warranty work.

ALL EXPRESS AND IMPLIED WARRANTIES FOR THIS PRODUCT
INCLUDING, BUT NOT LIMITEDTO, THE WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD. Some states
do not allow limitations on how long an implied warranty lasts, so the
above limitations may not apply to you.

UNDER NO CIRCUMSTANCES WILL GTEK, INC. BE LIABLE IN ANY
WAY TO THE USER FOR DAMAGES, INCLUDING ANY LOST
PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OF, OR INABILITY
TO USE, SUCH PRODUCT. Some states do not allow the exclusion or
limitation of incidental or consequential damages for consumer
products, so the above limitations or exclusion may not apply to you.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU
MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY FROM STATE
TO STATE.

The limited warranty applies to hardware products only.

.PA

 SERVICE

For warranty service or non warranty service, contact GTEK, INC. at
(601) 467-8048 to obtain an RMA (Return of Material Authorization
number). We will need the serial number and date of purchase. Send
the programmer, freight prepaid to:

GTEK, INC.

P. O. Box 289

307 COLEMAN Avenue

WAVELAND MS. 39576

Be sure to include the RMA on and in the package so we will know what
to do with it. GTEK will pay return freight (within the Continental United
States) on in-warranty service. Out of warranty service charges are
determined on an hourly labor plus materials basis.

.pa

 PGX AND PGMX SOFTWARE LICENSE AGREEMENT

“This software is a proprietary product of GTEK, Inc. It is protected
by copyright and trade secret laws. It is licensed (not sold) for use on
a single micro-computer system, and is licensed only on the condi-
tion that you agree to this LICENSE AGREEMENT.” GTEK, INC.
provides this program and licenses its use worldwide. You assume
responsibility for the use of this software to achieve your intended
results, and for the installation, use and results obtained from the
software.

LICENSE

The Licensee may:

a. use the program on a single machine;

b. copy the program into any machine readable or printed form for
backup or modification purposes in support of your use of the program
on the single machine;

c. modify the program and/or merge it into another program for your
use on the single machine (Any portion of this program merged into
another program will continue to be subject to the terms and conditions
of this

Agreement.): and,

d. transfer the program and license to another party if the other party
agrees to accept the terms and conditions of this Agreement. If you
transfer the program, you must at the same time either transfer all
copies whether in printed or machine- readable form to the same party
or destroy any copies not transferred; this includes all modifications
and portions of the program contained or merged into other programs.

You must reproduce and include the copyright notice on any copy,
modification or portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRO-
GRAM, OR ANY COPY, MODIFICATION OR MERGED PORTION, IN
WHOLE OR IN PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN
THIS LICENSE. IF YOU TRANSFER POSSESSION OF ANY COPY,
MODIFICATION OR MERGED PORTION OF THE PROGRAM TO
ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY TER-
MINATED.

TERM

The license is effective until terminated. You may terminate it at any
other time by destroying the program together with all copies,
modifications and merged portions in any form. It will also terminate
upon conditions set forth elsewhere in this Agreement or if you fail
to comply with any term or condition of this Agreement. You agree
upon such termination to destroy the program together with all copies,
modifications and merged portions in any form.

.pa

 PGX AND PGMX LIMITED WARRANTY

THIS PRODUCT IS NOT A CONSUMER PRODUCT WITHIN THE
MEANING OF THE UNIFORM COMMERCIAL CODE AND AP-
PLICABLE STATE LAW. THE PROGRAM IS PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU (NOT GTEK, INC.) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND
YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE
TO STATE.

GTEK, Inc. does not warrant that the functions contained in the
program will meet your requirements or that the operation of the
program will be uninterrupted or error free. However, GTEK, Inc.
warrants the diskette(s) on which the program is furnished, to be free
from defects in materials and workmanship under normal use for a
period of ninety (90) days from date of delivery to you as evidenced
by a copy of your receipt.

Licensee herein acknowledges that the software licensed hereunder
is of the class which inherently cannot be tested against all contingen-
cies by Licensor. Licensee acknowledges Licensee’s obligation to test
all programs produced by the licensed software to determine
suitability and correctness prior to use.

LIMITATIONS OF REMEDIES

GTEK, Inc.’s entire liability and your exclusive remedy shall be:

1. the replacement of any diskette(s) not meeting GTEK’s “Limited
Warranty” and which is returned to GTEK, Inc. with a copy of your
receipt, or

2. if GTEK, Inc. or the dealer is unable to deliver a replacement
diskette(s) which is free of defects in materials or workmanship, you
may terminate this Agreement by returning the program and your
money will be refunded.

IN NO EVENT WILL GTEK, INC. BE LIABLE TO YOU FOR ANY
DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE SUCH PROGRAM EVEN IF
GTEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION
OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES
SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU.

.pa

GENERAL

You may not substitute, assign or transfer the license or the program
except as expressly provided in this Agreement. Any attempt other-
wise to sublicense, assign or transfer any of the rights, duties or obliga

tions hereunder is void.

This Agreement will be governed by the laws of the State of Mississippi.

Should you have any questions concerning this Agreement, you may
contact GTEK, Inc. by writing to GTEK, Inc. Sales and Service,
P.O.Box 289, Waveland, MS, 39576.

